Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(22): 4061-4068, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35622093

RESUMO

All major biological processes start after protein molecules known as transcription factors detect specific regulatory sequences on DNA and initiate genetic expression by associating to them. But in eukaryotic cells, much of the DNA is covered by nucleosomes and other chromatin structures, preventing transcription factors from binding to their targets. At the same time, experimental studies show that there are several classes of proteins, called "pioneer transcription factors", that are able to reach the targets on nucleosomal DNA; however, the underlying microscopic mechanisms remain not well understood. We propose a new theoretical approach that might explain how pioneer transcription factors can find their targets. It is argued that pioneer transcription factors might weaken the interactions between the DNA and nucleosome by substituting them with similar interactions between transcription factors and DNA. Using this idea, we develop a discrete-state stochastic model that allows for exact calculations of target search dynamics on nucleosomal DNA using first-passage probabilities approach. It is found that the target search on nuclesomal DNA for pioneer transcription factors might be significantly accelerated while the search is slower on naked DNA in comparison with normal transcription factors. Our theoretical predictions are supported by Monte Carlo computer simulations, and they also agree with available experimental observations.


Assuntos
Nucleossomos , Fatores de Transcrição , Sítios de Ligação , Simulação por Computador , DNA/química , Método de Monte Carlo , Fatores de Transcrição/genética
2.
Phys Rev E ; 104(5-1): 054403, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942783

RESUMO

Recently, it has been shown that the long coiled-coil membrane tether protein early endosome antigen 1 (EEA1) switches from a rigid to a flexible conformation upon binding of a signaling protein to its free end. This flexibility switch represents a motorlike activity, allowing EEA1 to generate a force that moves vesicles closer to the membrane they will fuse with. It was hypothesized that the binding-induced signal could propagate along the coiled coil and lead to conformational changes through the localized domains of the protein chain that deviate from a perfect coiled-coil structure. To elucidate, if upon binding of a single protein the corresponding mechanical signal could propagate through the whole 200-nm-long chain, we propose a simplified description of the coiled coil as a one-dimensional Frenkel-Kontorova chain. Using numerical simulations, we find that an initial perturbation of the chain can propagate along its whole length in the presence of thermal fluctuations. This may enable the change of the configuration of the entire molecule and thereby affect its stiffness. Our work sheds light on intramolecular communication and force generation in long coiled-coil proteins.

3.
J Chem Phys ; 154(20): 204104, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241169

RESUMO

Microscopic mechanisms of natural processes are frequently understood in terms of random walk models by analyzing local particle transitions. This is because these models properly account for dynamic processes at the molecular level and provide a clear physical picture. Recent theoretical studies made a surprising discovery that in complex systems, the symmetry of molecular forward/backward transition times with respect to local bias in the dynamics may be broken and it may take longer to go downhill than uphill. The physical origins of these phenomena remain not fully understood. Here, we explore in more detail the microscopic features of the symmetry breaking in the forward/backward transition times by analyzing exactly solvable discrete-state stochastic models. In particular, we consider a specific case of two random walkers on a four-site periodic lattice as the way to represent the general systems with multiple pathways. It is found that the asymmetry in transition times depends on several factors that include the degree of deviation from equilibrium, the particle crowding, and methods of measurements of dynamic properties. Our theoretical analysis suggests that the asymmetry in transition times can be explored experimentally for determining the important microscopic features of natural processes by quantitatively measuring the local deviations from equilibrium and the degrees of crowding.

4.
J Phys Chem B ; 125(7): 1727-1734, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33570939

RESUMO

Protein searching and binding to specific sites on DNA is a fundamentally important process that marks the beginning of all major cellular transformations. While the dynamics of protein-DNA interactions in in vitro settings is well investigated, the situation is much more complex for in vivo conditions because the DNA molecules in live cells are packed into chromosomal structures where they are undergoing strong dynamic and conformational fluctuations. In this work, we present a theoretical investigation on the role of DNA looping and DNA conformational fluctuations in the protein target search. It is based on a discrete-state stochastic analysis that allows for explicit calculations of dynamic properties, which is also supplemented by Monte Carlo computer simulations. It is found that for stronger nonspecific interactions between DNA and proteins the search occurs faster on the DNA looped conformation in comparison with the unlooped conformation, and the fastest search is observed when the loop is formed near the target site. It is also shown that DNA fluctuations between the looped and unlooped conformations influence the search dynamics, and this depends on the magnitude of conformational transition rates and on which conformation is more energetically stable. Physical-chemical arguments explaining these observations are presented. Our theoretical study suggests that the geometry and conformational changes in DNA are additional factors that might efficiently control the gene regulation processes.


Assuntos
DNA , Proteínas , Simulação por Computador , DNA/metabolismo , Método de Monte Carlo , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas/metabolismo
5.
Phys Rev E ; 104(6-1): 064603, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030844

RESUMO

We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction ϕ and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on ϕ, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing ϕ. We also analyze the relative motion in the dimers, finding that larger ϕ suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(ϕ) of translational and rotational motion of the dumbbells an exponential decay with ϕ for weak and a power-law variation D(ϕ)∝(ϕ-ϕ^{★})^{2.4} for strong crowding is found. A comparison of simulation results with theoretical predictions for D(ϕ) is discussed and some relevant experimental systems are overviewed.

7.
J Phys Chem Lett ; 11(11): 4530-4535, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32433884

RESUMO

Various natural processes can be analyzed using the concept of random walks. For a single random walker, the mean waiting times for uphill and downhill transitions between neighboring sites are equal. Here we investigate the uphill/downhill symmetry of waiting times for transitions of a tracer in crowded environment using exactly solvable one-dimensional stochastic models. It is found that, unexpectedly, the time to move in the direction of the bias (downhill) is always longer than the time to move against the bias (uphill). The degree of asymmetry depends on the particle density, the strength of the bias, and the size of the system. The microscopic origin of the symmetry breaking is discussed.

8.
J Chem Phys ; 152(2): 025101, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941320

RESUMO

Many fundamental biological processes are regulated by protein-DNA complexes called synaptosomes, which possess multiple interaction sites. Despite the critical importance of synaptosomes, the mechanisms of their formation are not well understood. Because of the multisite nature of participating proteins, it is widely believed that their search for specific sites on DNA involves the formation and breaking of DNA loops and sliding in the looped configurations. In reality, DNA in live cells is densely covered by other biological molecules that might interfere with the formation of synaptosomes. In this work, we developed a theoretical approach to evaluate the role of obstacles in the target search of multisite proteins when the formation of DNA loops and the sliding in looped configurations are possible. Our theoretical method is based on analysis of a discrete-state stochastic model that uses a master equations approach and extensive computer simulations. It is found that the obstacle slows down the search dynamics in the system when DNA loops are long-lived, but the effect is minimal for short-lived DNA loops. In addition, the relative positions of the target and the obstacle strongly influence the target search kinetics. Furthermore, the presence of the obstacle might increase the noise in the system. These observations are discussed using physical-chemical arguments. Our theoretical approach clarifies the molecular mechanisms of formation of protein-DNA complexes with multiple interactions sites.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Proteínas/química , Método de Monte Carlo
9.
J Chem Phys ; 151(12): 125101, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575173

RESUMO

Gene regulation is one of the most important fundamental biological processes in living cells. It involves multiple protein molecules that locate specific sites on DNA and assemble gene initiation or gene repression multimolecular complexes. While the protein search dynamics for DNA targets has been intensively investigated, the role of intermolecular interactions during the genetic activation or repression remains not well quantified. Here, we present a simple one-dimensional model of target search for two interacting molecules that can reversibly form a dimer molecular complex, which also participates in the search process. In addition, the proteins have finite residence times on specific target sites, and the gene is activated or repressed when both proteins are simultaneously present at the target. The model is analyzed using first-passage analytical calculations and Monte Carlo computer simulations. It is shown that the search dynamics exhibit a complex behavior depending on the strength of intermolecular interactions and on the target residence times. We also found that the search time shows a nonmonotonic behavior as a function of the dissociation rate for the molecular complex. Physical-chemical arguments to explain these observations are presented. Our theoretical approach highlights the importance of molecular interactions in the complex process of gene activation/repression by multiple transcription factor proteins.


Assuntos
DNA/química , Modelos Químicos , Simulação por Computador , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cinética , Método de Monte Carlo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Soft Matter ; 15(26): 5255-5263, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31204761

RESUMO

Complex DNA topological structures, including polymer loops, are frequently observed in biological processes when protein molecules simultaneously bind to several distant sites on DNA. However, the molecular mechanisms of formation of these systems remain not well understood. Existing theoretical studies focus only on specific interactions between protein and DNA molecules at target sequences. However, the electrostatic origin of primary protein-DNA interactions suggests that interactions of proteins with all DNA segments should be considered. Here we theoretically investigate the role of non-specific interactions between protein and DNA molecules on the dynamics of loop formation. Our approach is based on analyzing a discrete-state stochastic model via a method of first-passage probabilities supplemented by Monte Carlo computer simulations. It is found that depending on a protein sliding length during the non-specific binding event three different dynamic regimes of the DNA loop formation might be observed. In addition, the loop formation time might be optimized by varying the protein sliding length, the size of the DNA molecule, and the position of the specific target sequences on DNA. Our results demonstrate the importance of non-specific protein-DNA interactions in the dynamics of DNA loop formations.


Assuntos
DNA/química , Método de Monte Carlo , Proteínas/química , Simulação por Computador , Conformação de Ácido Nucleico , Ligação Proteica
11.
J Chem Phys ; 149(17): 174104, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30409016

RESUMO

Molecular search phenomena are observed in a variety of chemical and biological systems. During the search, the participating particles frequently move in complex inhomogeneous environments with random transitions between different dynamic modes. To understand the mechanisms of molecular search with alternating dynamics, we investigate the search dynamics with stochastic transitions between two conformations in a one-dimensional discrete-state stochastic model. It is explicitly analyzed using the first-passage time probability method to obtain a full dynamic description of the search process. A general dynamic phase diagram is developed. It is found that there are several dynamic regimes in the molecular search with conformational transitions, and they are determined by the relative values of the relevant length scales in the system. Theoretical predictions are fully supported by Monte Carlo computer simulations.

12.
J Phys Chem B ; 122(8): 2243-2250, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425454

RESUMO

Many chemical and biological systems exhibit intermittent search phenomena when participating particles alternate between dynamic regimes with different dimensionalities. Here we investigate theoretically a dynamic search process of finding a small target on a two-dimensional surface starting from a bulk solution, which is an example of such an intermittent search process. Both continuum and discrete-state stochastic descriptions are developed. It is found that depending on the scanning length λ, which describes the area visited by the reacting molecule during one search cycle, the system can exhibit three different search regimes: (i) For small λ values, the reactant finds the target mostly via three-dimensional bulk diffusion; (ii) for large λ values, the reactant molecule associates to the target mostly via surface diffusion; and (iii) for intermediate λ values, the reactant reaches the target via a combination of three-dimensional and two-dimensional search cycles. Our analysis also shows that the mean search times have different scalings as a function of the size of the surface segment depending on the nature of the dynamic search regime. Search dynamics are also sensitive to the position of the target for large scanning lengths. In addition, it is argued that the continuum description underestimates mean search times and does not always correctly describe the most optimal conditions for the surface-assisted dynamic processes. The importance of our findings for real natural systems is discussed.

13.
Phys Chem Chem Phys ; 19(28): 18338-18347, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678228

RESUMO

While the dynamics of polymer chains in equilibrium media is well understood by now, the polymer dynamics in active non-equilibrium environments can be very different. Here we study the dynamics of polymers in a viscous medium containing self-propelled particles in two dimensions by using Brownian dynamics simulations. We find that the polymer center of mass exhibits a superdiffusive motion at short to intermediate times and the motion turns normal at long times, but with a greatly enhanced diffusivity. Interestingly, the long time diffusivity shows a non-monotonic behavior as a function of chain length and stiffness. We analyze how the polymer conformation and the accumulation of self-propelled particles, and therefore the directed motion of the polymer, are correlated. At the point of maximal polymer diffusivity, the polymer has preferentially bent conformations maintained by the balance between the chain elasticity and the propelling force generated by the active particles. We also consider the barrier crossing dynamics of actively-driven polymers in a double-well potential. The barrier crossing times are demonstrated to have a peculiar non-monotonic dependence, related to that of the diffusivity. This effect can be potentially utilized for sorting polymers from solutions in in vitro experiments.

14.
Proc Natl Acad Sci U S A ; 113(45): 12733-12738, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791062

RESUMO

In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics.

15.
J Chem Phys ; 142(15): 155101, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25903911

RESUMO

A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 10(2)-10(6) than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.


Assuntos
DNA/química , Ciclização , Conformação de Ácido Nucleico , Temperatura , Termodinâmica
16.
Soft Matter ; 11(3): 472-88, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413029

RESUMO

The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Polímeros/química , Simulação por Computador , Proteínas de Ligação a DNA/química , Difusão , Cinética , RNA/química , Viscosidade
17.
ACS Macro Lett ; 4(2): 202-206, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35596432

RESUMO

We study by extensive computer simulations the looping characteristics of linear polymers with varying persistence length inside a spherical cavity in the presence of macromolecular crowding. For stiff chains, the looping probability and looping time reveal wildly oscillating patterns as functions of the chain length. The effects of crowding differ dramatically for flexible versus stiff polymers. While for flexible chains the looping kinetics is slowed down by the crowders, for stiffer chains the kinetics turns out to be either decreased or facilitated, depending on the polymer length. For severe confinement, the looping kinetics may become strongly facilitated by crowding. Our findings are of broad impact for DNA looping in the crowded and compartmentalized interior of living biological cells.

18.
J Chem Phys ; 136(20): 205104, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667592

RESUMO

We study the driven translocation of polymers under time-dependent driving forces using N-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation time, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.


Assuntos
Movimento (Física) , Nanoporos , Polímeros/química , Modelos Químicos , Porosidade , Termodinâmica
19.
J Chem Phys ; 136(4): 045101, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22299917

RESUMO

Biopolymer looping is a dynamic process that occurs ubiquitously in cells for gene regulation, protein folding, etc. In cellular environments, biopolymers are often subject to tensions which are either static or temporally fluctuating far away from equilibrium. We study the dynamics of semiflexible polymer looping in the presence of such tensions by using Brownian dynamics simulation combined with an analytical theory. We show a minute tension dramatically changes the looping time, especially for long chains. Considering a dichotomically flipping noise as a simple example of the nonequilibrium tension, we find the phenomenon of resonant activation, where the looping time can be the minimum at an optimal flipping time. We discuss our results in connection with recent experiments.


Assuntos
Biopolímeros/química , Modelos Biológicos , Tensão Superficial
20.
J Chem Phys ; 133(18): 184902, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21073227

RESUMO

We study the dynamics of flexible, semiflexible, and self-avoiding polymer chains moving under a Kramers metastable potential. Due to thermal noise, the polymers, initially placed in the metastable well, can cross the potential barrier, but these events are extremely rare if the barrier is much larger than thermal energy. To speed up the slow rate processes in computer simulations, we extend the recently proposed path integral hyperdynamics method to the cases of polymers. We consider the cases where the polymers' radii of gyration are comparable to the distance between the well bottom and the barrier top. We find that, for a flexible polymers, the crossing rate (R) monotonically decreases with chain contour length (L), but with the magnitude much larger than the Kramers rate in the globular limit. For a semiflexible polymer, the crossing rate decreases with L but becomes nearly constant for large L. For a fixed L, the crossing rate becomes maximum at an intermediate bending stiffness. For the self-avoiding chain, the rate is a nonmonotonic function of L, first decreasing with L, and then, above a certain length, increasing with L. These findings can be instrumental for efficient separation of biopolymers.


Assuntos
Simulação por Computador , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...